The Within-Strip Discrete Unit Disk Cover Problem

نویسندگان

  • Robert Fraser
  • Alejandro López-Ortiz
چکیده

We investigate the Within-Strip Discrete Unit Disk Cover problem (WSDUDC), where one wishes to find a minimal set of unit disks from an input set D so that a set of points P is covered. Furthermore, all points and disk centres are located in a strip of height h, defined by a pair of parallel lines. We give a general approximation algorithm which finds a 3d1/ √ 1− h2e-factor approximation to the optimal solution. We also provide a 4-approximate solution given a strip where h ≤ 2 √ 2/3, and a 3-approximation in a strip if h ≤ 4/5, improving over the 6-approximation for such strips using the general scheme. Finally, we show that WSDUDC is NPcomplete for a strip with any height h > 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Discrete Unit Disk Cover Problem

Given a set P of n points and a set D of m unit disks on a 2-dimensional plane, the discrete unit disk cover (DUDC) problem is (i) to check whether each point in P is covered by at least one disk in D or not and (ii) if so, then find a minimum cardinality subset D∗ ⊆ D such that the unit disks in D∗ cover all the points in P. The discrete unit disk cover problem is a geometric version of the ge...

متن کامل

Covering Points by Unit Disks of Fixed Location

Given a set P of points in the plane, and a set D of unit disks of fixed location, the discrete unit disk cover problem is to find a minimum-cardinality subset D′ ⊆ D that covers all points of P . This problem is a geometric version of the general set cover problem, where the sets are defined by a collection of unit disks. It is still NP-hard, but while the general set cover problem is not appr...

متن کامل

Practical Discrete Unit Disk Cover Using an Exact Line-Separable Algorithm

Given m unit disks and n points in the plane, the discrete unit disk cover problem is to select a minimum subset of the disks to cover the points. This problem is NP-hard [11] and the best previous practical solution is a 38-approximation algorithm by Carmi et al. [4]. We first consider the line-separable discrete unit disk cover problem (the set of disk centres can be separated from the set of...

متن کامل

An Improved Line-Separable Algorithm for Discrete Unit Disk Cover

Given a set D of m unit disks and a set P of n points in the plane, the discrete unit disk cover problem is to select a minimum cardinality subset D′ ⊆ D to cover P. This problem is NP-hard [14] and the best ∗[email protected][email protected][email protected] §[email protected][email protected][email protected] ∗∗[email protected] ††[email protected]

متن کامل

Unit Disk Cover Problem

Given a set D of unit disks in the Euclidean plane, we consider (i) the discrete unit disk cover (DUDC) problem and (ii) the rectangular region cover (RRC) problem. In the DUDC problem, for a given set P of points the objective is to select minimum cardinality subset D∗ ⊆ D such that each point in P is covered by at least one disk in D∗. On the other hand, in the RRC problem the objective is to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 674  شماره 

صفحات  -

تاریخ انتشار 2012